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Model of a Nonhomogeneous Medium 
Conducting Light 
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We consider a ray of light propagating within a system of infinitely many 
adjoining rectangles in a plane with passages between any pair of neighboring 
ones. The ray is assumed to be reflected by the sides of the rectangles, and is 
refracted while passing from one rectangle to its neighbor. We prove that if the 
sizes of the rectangles or the coefficients of refraction inside them are random, 
then with probability 1 the ray reaches arbitrarily remote rectangles. 
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INTRODUCTION 

In order  to analyze accurately whether light can propagate  through a 
nonhomogeneous  medium we construct  a model  which captures, as we 
believe, some impor tant  features of  multiscatering phenomena  in a r andom 
medium. The propaga t ion  of  light here is treated within geometric optics, 
i.e., we deal with ideal rays of  light propagat ing  in straight lines in a region 
on a plane. It is assumed that  this region consists of  infinitely many  
rectangles with parallel sides neighboring each other  in series, and each 
pair of adjoining rectangles provides passages between them (see Fig. 1). 
Further,  we assume that  the ray is reflected off the sides of the rectangles 
elastically, and is refracted on passage from one rectangle to its neighbor. 
In addition, the refraction coefficient is assumed to be constant  within each 
rectangle but it may  differ from rectangle to rectangle. We model  the non-  
homogenei ty  of  the medium by supposing that  the sizes of the rectangles 
and (or) the refraction coefficients in them are taken at random. So if the 
beam of light starts at a point  in the region it obviously travels f rom one 
rectangle to another  experiencing reflection or refraction repeatedly. 
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Fig. 1 

The main question posed in this article is whether a ray of light 
propagating in the described region can reach arbitrarily remote regions. 
One can easily construct simple examples of a system of rectangles with 
passages and a special ray such that it never leaves some subsystem consist- 
ing of a finite number of rectangles. But, as we prove here, with probability 
1 it does not happen. More precisely, if the sizes of the rectangles and (or) 
the coefficients of refraction are random (with a continuous distribution), 
then with probability 1 the ray does reach arbitrarily remote rectangles. 

Let us outline the main points of the proof. The posed problem can be 
easily reduced to the following problem concerning a system of a finite 
number of rectangles. Is the trajectory of a ray within such a system dense 
in it? Notice that if the coefficients of refraction are equal, we have in fact 
a billiard problem (see the monograph of Kornfeld et al.(l)). In particular, 
the ergodic proerties of some type of billiards and the relevant dynamical 
system on the torus that corresponds to one rectangle are discussed in this 
monograph. We extend this construction to build the Riemann surface 
c.orresponding to the system of rectangles with passages as well as the 
appropriate dynamical system on it. We find that the problem about 
minimality, i.e., density of the trajectories, of this dynamical system can 
be reduced to a similar problem for the special type of so-called interval 
exchange transformation (see refs. 1 and 2 for details concerning interval 
exchange transformations). Using the criterion of minimality (2) and 
treating the absence of minimality as a sort of a resonance, we find the 
nonresonance conditions for the parameters of the system in terms of the 
relevant interval exchange transformations. In fact, these conditions are the 
countable set of the equations involving arguments which are elementary 
combinations of the heights of the rectangles, the coefficients of refraction, 
and the initial angle between the ray and the vertical axis. 
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This paper is organized as follows. We state our results in the Section 
t. Theorem 1.2 is our main result on the propagation of light in 
the unbounded random medium, as described above. It follows from 
Theorem 1.3, which states that with probability 1 the trajectory of light 
within a system of a finite number of rectangles is dense. Theorems 1.2 and 
1.3 are proved in Section 3. Theorem 1.6 is a statement about the mini- 
reality of a certain class of interval exchange transformations. It forms the 
basis for the proof of Theorem 1.3. Theorem 1.6 is established in Section 2. 

1. S T A T E M E N T  OF  R E S U L T S  

We start by accurately defining the system of rectangles mentioned in 
the Introduction. Let (aj., j e Y} be a sequence of real numbers on the y 
axis such that 

a,<aj if i<j; lim a j= -F o e  (1.1) 

The interval [aj_ 2, ajJ we denote by Hi. Let {Bj, j E  7/} be a sequence of 
intervals on the x axis such that 

L(Bj_lnBj)>O for j~Z (1.2) 

where L(.  ) is the Lebesgue measure on JR. The rectangle Bj x Hj we denote 
by Rj. Let us denote by R the union of all rectangles Rj. We consider the 
sides of these rectangles as forming a reflecting surface. We also eliminate 
a part of this surface in order to have a nontrivial region for light to 
propagate through. 

D e f i n i t i o n  1.1. (Passages, reflecting surface.) The passage ~j through 
the common boundary of neighboring rectangles Rj and Rj_ 1 is defined as 
a finite union of nonempty open intervals lrj, k included in the interval 
Rj n R~_ 1. If k is the union of all sides of all rectangles R / a n d  ff is the 
union of all passages, then the reflecting surface S is/~\ff. 

Thus R\S is supposed to be the region within which the ray of light 
propagates. 

We assume that a ray arriving at a reflecting surface is reflected elasti- 
cally, i.e., if c~ is the angle between an incident ray and the y axis, then 7~ - c~ 
is the corresponding angle associated with the reflected ray (see Fig. 2). 
We also assume that the refraction coefficient r j=  x ~ j  (ej is a dielectric 
constant) is constant within each rectangle Rj, but it can be different in dif- 
ferent rectangles. In addition, we suppose that a ray passing between two 
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Fig. 2 

media I and II with different refraction coefficients r I and r]i , respectively, 
obeys the law (see Fig. 3) 

r1 sin ~i = ril sin ~i, (1.3) 

Thus we consider a ray of light starting at a point of the described 
region and propagating in some direction. It propagates in straight lines 
within any rectangle. If it reaches the reflecting surface or a passage, it is 
correspondingly reflected or refracted according to (1.3). 

Now we assume some of the parameters describing the region R to be 
random. Namely, denote by hj the height of the rectangle Rs, i.e., the length 
of the interval Hi. 

Assumption M. The variables hj, rj, j ~ Z ,  are supposed to be 
random and independent. In addition, ( i)for any integer j the random 
variable hjr f  1 has a continuous distribution; and (ii)there exist real 
positive constants r and r+ such that r_ ~< rj~< r+.  

Considering the refraction equation (1.3), we may fix q ,  rli, and, for 
instance cq. It may happen that there is no real cqi satisfying this equality. 

C~ I 

I r I 

I I  r l I  

Fig. 3 
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In optics such a phenomenon is known as full reflection, since in this case 
the surface between two media behaves like a mirror. In order to prevent 
this, we impose the following assumption. 

Assumption k. Let the ray of light start in the rectangle Ro, 
making angle c~ with the y axis. We assume that 

Y 
0 < c~ < Arcsin ~ (1.4) 

F +  

Theorem 1.2. Suppose R to be the region defined above, where 
each pair of neighboring rectangles has a passage, and a ray of light 
propagates in R obeying the laws of elastic reflection and refraction (1.3). 
Assume that horizontal sides Bj of rectangles as well as passages are fixed, 
whereas their heights and refraction coefficients are random and satisfy 
Assumption M. Let a ray start at a point in rectangle R0, with c~ the angle 
between it and the y axis, satisfying Assumption L. Then with probability 
1 for Lebesgue measure almost all :o's from the interval (0, Arcsin(r /r+)) 
the ray reaches arbitrarily remote parts of R regardless of the starting point 
in R0. 

Theorem 1.2 is a consequence of the following statement. 

Theorem 1.3. Suppose R (n) to be the region formed by the rec- 
tangles Ro,..., Rn, where each pair of neighboring rectangles has a passage, 
and a ray of light propagates in R (n~ obeying the laws of elastic reflection 
and refraction (1.3). Assume that all other conditions of the Theorem 1.2 
are satisfied. Then with probability 1 for Lebesgue measure almost all cr 
from the interval (0, Arcsin(r_/r+)) the trajectory of the ray is a dense set 
in R (n) regardless to the starting point in Ro. 

As we will see, the main problem, in particular Theorem 1.3, can be 
reduced to a statement about interval exchange transformations. Since it 
is of a certain interest in itself, we formulate it here. Let us recall the 
definition of the interval exchange transformation. 

Definition 1.4. (Interval exchange transformation. (1'2)) Let 
X =  [0, L [  be an interval, n >~ 2 be an integer, and cj, 1 ~ j ~  n, be positive 
numbers such that cl + ... + cn = L. Assume that 

i 

f lo=0,  fli= ~ cj, Xi=[fl~,fli_l[, l <<.i<~n 
j 1 

Let T be a permutation of the symbols { 1, 2,..., n }. Then 

c~= {c~-,(, I, c~ ,~,,..., c, ~c.I} 
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is a vector with positive components, the sum of which equals L. Having 
c ~, we can form the corresponding /~ and X~, 1 ~< j<~n. Now we define 
T: X~--, X by setting 

Tx = x - / 3 i -  ~ +/3~-1(o_ 1 

for each x ~ Xi and each 1 ~< i ~< n. Now, T maps each interval X~ isome- 
trically onto the corresponding interval X; ~(~). We call T the interval 
exchange transformation. 

We need also the following fundamental property. 

D e f i n i t i o n  1.5 (Minimality). An interval exchange transformation 
T on the interval [0, L[  is called minimal if for any x ~  [0, L[. the set 
{Tmx,  m ~ Z} is dense in the interval [0, L [ .  

Let us introduce the function 

XL(x) = X, 0 ~ X <~ L, XL(x + nL)  = XL(X), 

and the mapping 

s~(x)  = zL(x  + ~), ~ ~ ~, x ~ l-0, L[. 

T h e o r e m  1.6 (Interval exchange transformations). 

n~7/ (1.5) 

(1.6) 

Let F be an 
interval exchange transformation on the interval [0, L[ .  Then S~_F is an 
interval exchange transformation on [-0, L[- for any real ~, and it is 
minimal for all ~ except some countable set. 

R e m a r k  1.7. Masur (3) and Veech (4) proved that typically (for 
Lebesgue measure almost all/3i) an interval exchange transformation pos- 
sesses the minimal property, and even more than that, it is uniquely 
ergodic. Theorem 1.6 says that the interval exchange transformation can 
possess the minimal property even if its points of discontinuity/31,/32 .... are 
rationally dependent. 

In order to outline the connection between the propagation of the ray 
of light in a region described in Theorem 1.3 and interval exchange trans- 
formations, let us take a segment on the horizontal side of one of the 
rectangles and let a beam of light start at a point @ on the segment making 
a fixed angle c~ with the segment. Assume for simplicity now that all the 
refraction coefficients are equal. Considering the trajectory of the ray, 
we note that eventually it crosses again the segment at a point (9' due to 
Poincar6's theorem (this is true at least for almost all points (9). So we have 
a map by which there corresponds to each point (9 the defined point (9' 
that is connected by a portion of the trajectory of the ray that starts at (9 
and terminates at (9'. Suppose that this portion of the trajectory does not 
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go through the edges of the passages. Then if we move a little bit away 
from the point (9 along the segment, all points of the portion of the trajec- 
tory move the same distance in the horizontal direction, in particular, point 
(9' does. We can proceed in this fashion until the portion of the trajectory 
crosses an edge of a passage. At this point the mapping (9 ~ (9' has a break. 
This observation demonstrates how interval exchange transformations arise 
in the problem. In addition, as we show in this paper, the density of the 
trajectory of the ray in the region can be derived from the density of 
trajectories of the relevant interval exchange transformations. 

2. I N T E R V A L  E X C H A N G E  T R A N S F O R M A T I O N  

For any interval exchange transformation F of the interval [0, Lr  we 
denote by 

D(F)={(~I,...,~b=}, 0<~b 1 ..... q)=<L (2.1) 

the set of the points of discontinuity ofF. 

Definition 2.1 (Irreducibility). An interval exchange transforma- 
tion T on the interval [0, L r  with D(T) = {Vl ..... %} is called irreducible if 
TEO, tj[ ~ EO, ~j[, l <~ j<~ n. 

To prove Theorem 1.6, we will use the following result. 

Proposition 2.2. (2) If T is an irreducible interval exchange trans- 
formation on the [0, L [, and for any m ~ Y + = { 1, 2,... }, 

Tmzj~i ,  l <~i,j<~n (2.2) 

then T is minimal. 

Le rnma  2.3. Let F be an interval exchange transformation on the 
E0, L [  and ~ e ~; then: 

(i) Sr is an interval exchange transformation with the unique point 
of the discontinuity L -- ~ = S~- 1(0). 

(ii) Sr is an interval exchange transformation, and D(Sr 
D(F)w{F 1S~(0)}.  

(iii) If ~ is such that 

L-~#F(()j) ,  l<~j<~n (2.3a) 

or, what is equivalent, 

S~F((~j)r l <.j<.n (2.3b) 
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then ScF is an interval exchange transformation with the following set of 
points of discontinuity: 

D(Sr {F-~S~-I(0)} = {~bl,..., ~b,, F-~S~I(0)}  (2.4) 

Proof. The statement (i) follows immediately from the definition of 
Sr by (1.6). The equivalence of (2.3a) and (2.3b) follows straightforwardly 
from (i). To prove (ii), le t  us notice that if y~t {~bl,..., ~b , ,F -aS~(0)} ,  
then F is continuous at y, and S~ is continuous at F(y). Therefore, y is a 
point of continuity of Sr and D(S~F)_ {~b~,..., ~b,, F-1S~-I(0)}, which 
completes the proof of (ii). 

Now, if y -= ~b~, 1 ~< j ~< n, then in accordance with (i) and (2.3b), F(Oj) 
is a point of continuity of Sr and 

lim Sr 
h ~  • 

Since Sr is a one-to-one mapping, and F(y+O) are different, we have 
y ~ D(S~F), and D(F) ~_ D(S~F). If y = F-~S~I(O), then, as follows from 
(2.3b), y r D(F) and y is a point of continuity ofF. Therefore 

lira S~F[F-~S[ ~(0) + h] - -  Sr ~___ O] 
h ~  ~ 0  

Since, in accordance with (i), S f l ( 0 )  is a point of discontinuity of Sr we 
have from the last equality y = F-~S~(O)~ D(Sr which completes the 
proof of (iii) and the lemma. | 

I . e m m a  2.4 (Irreducibility). If ~b0=0, F is an interval exchange 
transformation on the [0, L [  with D(F)= {~bi,..., ~b,}, and ~ is such that 

S~F(Oj)~Oi, O<.i,j<~n (2.5) 

then S~F is irreducible. 

Proof. Let us notice that the conditions (2.5) contain, in particular, 
the conditions (2.3) when i = 0 ,  and therefore the statement (iii) of 
Lemma 2.4 is true. Suppose that S~F is reducible, i.e., for some y from 
D(S~F) we have S~F[O, y[  = [0, y[-. Since S~F is a one-to-one mapping 
from [0, L[  to itself, we have S~F[y, L[-= [y, L[.  Besides, F-IS~I(O)~ 
[y, L[ ,  because ScF[F-1S~I(O)] = 0. In particular, y ~ F-IS~-I(O), and 
since y~D(S~F), using (2.4), we obtain y = Oj~D(F) for some • where 
1 <~j<~n. Moreover, all points of discontinuity of Sr on [y,  L[  are from 
D(F). Therefore there exists such z e  [-y, L[  that S~Fz=y. If we assume 
that zCD(F), then z~ ]y,  L[ ,  and z is a point of continuity of Sr From 
this we would conclude that Sr ]y, L[, which contradicts Sr 
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Thus z=OieD(F) for some i, where l<~i<~n, and we have S~F(~bj)=~bg. 
But the last equality is in contradiction to (2.5). Thus, the lemma is 
true. | 

Let us introduce the following functions: 

Sl(~, x) = ScF(x) = ZL(~ + r(x)), ~ e R, x ~ [0, L[  (2.6) 

Sm(~, x) = sl(~, Sm_ 1(4, X)), m = 2, 3 .... (2.7) 

L e m m a  2.5. We have the following statements: 

(i) sin(., .): Rx  [0, L [ ~  [0, L[ ,  Sm(~,x)=(ScF)mx, rnE 7/+. 

(ii) The functions Sm(', ") are periodic functions of ~, i.e., 

s,,(~ + kL, x) = Sm(~, X), k e 77, m e 7/+ 

(iii) If x is any fixed number from [0, L[ ,  and ~m(~.)=Sm(~, X), 
e [0, L[ ,  then 

~m(~)=Sl(~-,~m--~(r ~m('): [0, L[  ~--, [0, L[  (2.8) 

Proof. All statements of this lemma are straightforward consequen- 
ces of the definitions (1.5), (1.6), (2.6), and (2.7). | 

As follows from the constructions, the functions ~,~ are piecewise 
linear. In order to prove it and find their properties, we introduce the 
following classes of functions. 

D e f i n i t i o n  2.6. Let ~m, me7/+,  be a class of functions s(-): 
[0, L [  ~ [0, L[  each possessing the following property: there exists a non- 
negative integer k=k(s(.)), and two sets of real numbers tojjo~/~+i, {cj} ok 
depending on s(.), such that 

0=1o<11<  -.. <lk<lk+l=L (2.9) 

s(~_)=m~+@, r e [-/i,/j+ t[ , O<.j<<.k (2.10) 

The set D(s)= {/1,---, l~} is supposed to be a set containing points of 
discontinuity of s(. ). 

L e m m a  2 .7 .  Let ~m, m e 7/+, be the classes of functions defined 
above. Then: 

(i) If F is an interval exchange transformation on [0, L[  and 
s ( - )e~m,  then F e ~  and F(s(.))e~,,. 
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(ii) I f s ( ' ) ~ m ,  then S I ( ' , S ( ' ) ) E ' ~ m +  1. 

(iii) Sm(')~'m, m e Z + .  
(iv) If y e [0, L [ ,  then the number of solutions of the equation 

s = Y (2.11) 

is finite. 

ProoL The fact that belongs to ~ obviously follows from Defini- 
tion 1.4. Let D(Fs) be a set of the points of discontinuity of the mapping 
F(s(.)). Then D(Fs) c_D(s)vo s-I(D(F)). Since the last set is obviously 
finite, we have the associated finite partition of [0, L[  into smaller 
half-open intervals Jk, and s(.)  as well as F(s(.)) are continuous within 
each such Jk. Having this, we easily obtain the representation (2.10) for 
F(s(.)) on each Jk, which completes the proof of (i). The statement (ii) 
follows from (i) and (2.6). The statement (iii) for Sl follows immediately 
from (2.6). The validity of this statement for arbitrary natural number m 
can be obtained by induction from (2.8) and the statement (ii) of this 
lemma. Finally, (iv) is a straightforward consequence of (iii). This 
completes the proof of the lemma. | 

D e f i n i t i o n  2.8. Let F be the interval exchange transformation on 
[0, L[  with D(F)={~bl ..... q~n}, 0<~bl,...,q~n<L, and ~b0=0. We call a 
number ~ e R resonant to F if there exist a natural numer m and non- 
negative integers i, j, O4i, j<~n, such that (S~F)mOi=Oj. If ~ is not 
resonant, we call it nonresonant. The set RFC ~ of numbers resonant to F 
we call the resonant set, and its complement NF= ~ \ R  F, i.e., the set of 
nonresonant numbers, we call the nonresonant set. 

k e m m a  2.9. Following the notations of the previous definition, we 

have: 

(i) If x and y are any fixed numbers from [0, L [  and m is any 
natural number, then the number of r which satisfy the equation 

(SeF) m x = y (2.12) 

is finite. 

(ii) 

(iii) 
the following nonresonant conditions: 

(ScF)m~is~q~j, m e Y + ,  

The resonant set R F is countable. 

The nonresonant set N F c a n  be defined as the set of ~ that satisfy 

O <~ i, j <<. n (2.13) 
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Proof. The statement (i) follows immediately from Lemma 2.5 and 
Lemma 2.7(iv). The fact that RF is countable follows from its definition and 
(i). The statement (iii) follows straightforwardly from Definition 2.8. II 

Proof of Theorem 1.6. Let us show that if r ~ N F = ~ \ R F ,  then ScF 
satisfies the conditions of Proposition 2.2. First, in accordance with Lem- 
ma 2.9(ii), NF differs from R on a countable set only. Second, as follows 
from Lemma 2.9, if ~ ~ NF, then the nonresonant conditions (2.13) are true. 
Since these conditions obviously cover the conditions (2.5) of Lemma 2.4, 
Sr is an irreducible interval exchange transformation. Besides, the condi- 
tions (2.13) cover also the conditions of Lemma 2.3, and therefore the 
representation (2.4) is true. Using this representation and recalling that 
~bo=0, we easily find that for T = S : F  the conditions (2.13) yield the 
inequalities (2.2). This completes the proof of Theorem 1.6. | 

To provide the constructions establishing Theorems 1.2 and 1.3 by 
necessary elements, we need some more concepts. 

De f in i t i on  2.10 (Induced map). Let T be an automorphism of 
the Lebesgue space (X, m), and suppose that Y is a measurable subset 
of X, m(Y)>0.  For all y e Y  we set k(y)=min{k:keB}  if B r  
and k ( y ) = + o o  if B = ~ ,  where B={ke2~+:TkyeY} .  If Y= 
{y: k(y)< +oo }, then by Poincar6's theorem m(Y)= re(Y). The mapping 
T'y: y ~ Tk(y)y, y E Y, is called the induced map generated by T on }7. 

De f in i t i on  2.11 (Multi-interval exchange transformation). Let I 
be a union of a finite number of disjoint half-open intervals I~ = [ak, b~[. 
Let us call a one-to-one mapping from I to I a multi-interval exchange 
transformation if there exist a partition of each half-open interval into a 
finite number of half-open intervals I~,j and corresponding constants ck,j 
such that 

TX=X+Ck,j, XeIk, j (2.14) 

The defined multi-interval exchange transformations arise naturally as 
induced maps generated by interval exchange transformations T, defined 
on the interval [0, L[ ,  and I, which is a union of a finite number of disjoint 
half-open intervals I k included in [0, L[.  It is the subject of the following 
lemma, which generalizes the corresponding result when I is an 
half-interval. (2) 

L e m m a  2 .12  (Multi-interval exchange transformation). Using the 
notations of Definition 2.11, suppose that F is an interval exchange 
transformation on [0, L [  and I___ [0, L[ .  Then the induced map Fj is a 
multi-interval exchange transformation. The set D(F;) of the points of 
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discontinuity of Fi  can be found as follows. Let us assign to each x 
from [-0, L[- the nonnegative number l ( x ) = m i n { l : l ~ B }  if B r  and 
/ (x )=  + ~  if B = ~ ,  where B =  { />0 :  T - % ~ I ) .  Then each point of dis- 
continuity of b~ is of the form T ~X)x, where x is either a point of discon- 
tinuity of F or an endpoint of I with l(x) < +Go. 

Proof. Let us consider the partition of the set I into smaller half- 
open intervals, associated with the points T-~X)x, described in the state- 
ment of the lemma. Let [a, b[ be any interval of this partition. In other 
words, [a, b[ is a subset of some Ik, and each of a or b is either an 
endpoint of Ik or has the form T-t~)x, mentioned above. We should prove 
that Fi  is continuous on the [ a , b [ .  In order to do so, assume that 
y~  ]a, b[ ,  and that for some natural number m 

We state that 

and 

Fmy6I ,  F tyr  l<<.l<~m-1 (2.15) 

Fty C D( F) = { (J , ..... qb , }, l <<. l <~ m - 1  (2.16) 

Fmy6 i (2.17) 

where i is the interior o f / .  Indeed, assume that for some appropriate l, 
F l y = ( ~ D ( F ) ,  i.e., y - - F  t(>. Then F - ~ ) ~ L  where l~</(~b)~</, and 
F t - ~ y  = F ~<~(> ~ I. Combining the last relation with (2.15), we must set 
/(~b)=L But in this case y=F-~o)(> is in ]a, h i ,  which contradicts the 
construction of the interval l-a, b[. Therefore, if (2.15) is true, then (2.16) 
is true. 

Now supposing (2.15), assume that (2.17) is not true, i.e., F " y = e ,  
where e is an endpoint of L Then, y = F me and therefore F t~e~e e / ,  1 ~< 
l(e)<~m. In addition, F m t ( e )y=F t~e)eel, which together with (2.15) 
implies l (e)=m, and y=F-t<e)e. But the last relation contradicts the 
construction of the interval [a, hi .  Thus, if (2.15) is true, then both (2.16) 
and (2.17) are true. 

The validity of (2.16) and (2.17) in turn implies that F t, 1 <<.l<~m, are 
continuous mappings within some open interval Oy ~ y, and 

Fix  = Fmx, x ~ Oy; FmOy is an interval in I (2.18) 

Now, let us prove that the equality in (2.18) holds on the whole interval 
]a, hi .  Recalling Definition 2.10, we suppose T=F,  X =  EO, L[,  m = L is 
Lebesgue measure on [0, L[-, and Y = / .  In addition, we set 

mo = essmin k(y)  (2.19) 
yE ]a,b[- 
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i.e., 

k(y)>~mo, a.e. in ]a,b[ (2.20) 

Then we obviously have 

L { y e  ]a, b[: k(y)=mo} > 0  (2.21) 

Combining (2.18) and (2.20), we obtain 

k(y) >~mo, y e  ]a, b[ (2.22) 

We can notice from Definition 2.10 that m o ~> 1. Now we will prove 
that F m~ is a continuous mapping on [a, b[. From (2.22) we have 

F~yq~L 1 ~<l~<mo- 1, y~]a ,b [  (2.23) 

Let us show that 

Fry (~ D(F), 0 <~ l <<. mo - 1, y ~ ]a, b[ (2.24) 

If mo = 1, it is obviously follows from the construction of the interval 
[a, b[. If mo>  1, the assumption that Fty=OeD(F)  for appropriate l~> 1 
leads to a contradiction. Indeed, if the last is true, we have ]a, b[ 
y = F t~b, and then F-t(~)~b e I, 1 ~< l(~b) ~< l, and F ~- t(~y e / .  Combining the 
last relation with (2.23), we must set l(~b)= l, which leads to y = F-t(Okb �9 I, 
which contradicts the construction of [a, b[. Therefore, (2.24) is true. This 
implies in turn that F m~ is continuous on ]a, b[. Therefore Fm~ b[ is an 
interval. Moreover, from (2.21) we have Fm~ b[ c~ I r  ~ .  Let us prove 
that 

Fm~ b[ c_] (2.25) 

To establish (2.25), it is sufficient to prove for any y E ]a, b[ that Fm~ is 
not an endpoint of/ .  This proof is literally the same as the proof of (2.24), 
in particular, it exploits (2.23). Thus (2.25) is true. Since F m~ is continuous 
on the right, we have from (2.25) Fm~ b[ ~ I, and therefore the interval 
F'~~ b[ ~ Ij for some j. From this and inequality (2.20) we can infer that 
k(y)=mo,  y e  [a, b[, and then conclude that 

F; tEa, bE = Fro~ I E-,bE (2.26) 

Therefore F;[a, b[ is an interval included in some Ij. The last remark, 
(2.26), and the fact that the intervals [a, b[ form the partition of I imply 
easily the lemma. | 

822/69/5-6-5 
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3. D Y N A M I C A L  S Y S T E M S  INTERPRETATION A N D  PROOF OF 
M A I N  RESULTS 

We begin with a consideration of Theorem 1.3. The rigorous proof is 
rather lengthy and requires, first, the replacement of rectangles Rj by the 
appropriate tori (see Proposition 3.1 below) and, second, the construction 
of the relevant Riemann surface. This is why we give first an informal 
proof, cutting out some technical details. 

Informal  Arguments .  For simplicity we now suppose that all the 
refraction coefficients are equal, so we have a billiard dynamical system. (1~ 
Let us introduce notation as is shown in Fig. 4. Suppose a ray starts at a 
point (9 on the upper side of the rectangle Rn. The statement of 
Theorem 1.3 is that for Lebesgue measure almost all h o, hi,..., h, ,  c~ and any 
point (9 ~ [tin, Nn] the trajectory of the ray is a dense set in the region R (n). 
Let us fix now the horizontal sides of the rectangles Rj and the passages rcj 
(see Definition 1.1) through them, O<~j<<.n. We shall prove the desired 
statement by induction on n. To do so, we assume that Theorem 1.3 is true 
for the system of rectangles Ro ..... R~_I. Then let us fix h0, hi ..... hn_l for 
which the statement of Theorem 1.3 holds. We want to show that for 
Lebesgue measure almost all hn and ~ the trajectory of the ray is dense 
in Rn. To do this, it is sufficient to check whether the trajectory is dense 
in the interval ' [ d , ,  ~ , ] .  Let (9 E [ d , ,  ~.] (see Fig. 4). Suppose the ray 
starts at (9. Let (9' denote the point of the first return on the side [zur Nn] 
(this time is finite at least for almost all points (9). Denote by/7,  the corre- 
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hn 

en 
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%n 

~n 

R n (rectangle) 
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/~ r t - -  1 
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Fig. 4 
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sponding automorphism on [ d , ,  N,] ,  i.e., F,: (9 ~ (9'. We include in the 
induction assumption the statement that the relevant F,  I is an interval 
exchange transformation on the interval [ d ,  1, ~ , - 1 ]  (see Fig. 4 and 
Definition 1.4). Now let us show that F.  possesses the following properties: 

(i) F,, is an interval exchange transformation (for a finite number of 
intervals!) on Ida ,  ~ , ] ,  and therefore it is defined for all points (9. 

(ii) V(ge Es~,,, r the set {Fm(9, m =  1,2,...} is dense in [~d,, ~ ] .  

To prove (i) and (ii), let us reason as follows. Starting at a point (9, 
the ray crosses the lower side [%,  ~ ]  at a point (9". There are two 
possibilities here: (a) the  point (9" does not belong to any of the passages 
from z~, between R,  and R ,_  1; (b) (9" belongs to a passage from ~,. In the 
case (a) the ray reflects off the lower side and (9' = (9 + 2h,, sin e (rigorously 
speaking, the last equality can be completely justified after the replacement 
of the rectangles by the corresponding tori; see Proposition 3.1 below). In 
other words, for those points, F,  acts just as the shift by 2h, sin e. In case 
(b) the ray crosses one of the passages and moves into the rectangle Rn_ 1. 
Then, traveling within the rectangles R,, 1 ..... R o, the ray eventually 
returns to one of the passages between Rn and R, 1. This must happen by 
the inductive hypothesis. Le now F,~ 1 be the induced automorphism 
generated by the mapping F . _  1 on the interval [ d . _  1, ~ n  -- 1 ] and the set 
z .  which is a finite set of intervals (passages). Then we define the 
automorphism F ._  1: [cg., ~n] ~-~ [Z,,, @,,] by the formula 

{F /~n I x =  n--lX' i f  XETC~ 
x, if x~  [ % , ~ . ] \ ~ .  

Now we have the following recursive relationship: 

F ,  = S ~  o -Fn - 1 o S e ,  ~ = 2h. sin c~ 

where S~ is the shift by ~ on the intervals [~r Nn] or [% ,  ~ , ]  (as we 
noticed before, these intervals should be replaced by the relevant circles). 
From the relationships obtained we may conclude that if F , _  1 is an 
interval exchange transformation, then Fn is an interval transformation, 
too. Then the problem of whether the map F,  has dense trajectories is 
equivalent to the same problem for the map S~ o Fn o S~-l= S~ o Fn-1.  Now 
may use Theorem 1.6, since ~ = 2h, sin c~ and we can choose hn as we wish. 
This completes our informal arguments. 

Now let us consider the rigorous proof of Theorem 1.3. If the refrac- 
tion coefficients are equal, actually we have a problem about a billiard 
dynamical system. {n The construction of a billiard system might be 
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naturally extended to cover the refraction phenomenon. In the special case 
of the system of rectangles that we deal with here, we can use the following 
representation of trajectories of the ray as a projection of relevant trajec- 
tories on the associated tori. 

Proposit ion 3.1 (Torus(l/). Let A = [0, b] x [0, hi  be a rectangle 
in the xy plane, considered as a phase space for the billiard system, and 
ii = l - -b ,  b] x I - h ,  hi  is a torus, i.e., we identify horizontal and vertical 
sides, respectively. Consider the trajectory q(t), t ~ O, on A that starts at 
q(0) = qo in the direction of a unit vector w. If the operator J: ~2 ~ R2 is 
defined by 

J(x, y ) =  (Ixl, lYL), (x, y ) ~ 2  (3.1) 

and Q(t) = qo + wt, t >~ O, is a trajectory on the rotus A, then (see Fig. 5) 

q(t)=JQ(t) ,  t>~O (3.2) 

Now our plan is as follows: 

(i) To represent each rectangle Rj as a torus Rj, 0 ~< j ~ n, considered 
as a sheet of a Riemann surface (namely, if we have in the local coordinates 
R j=  [0, bj] x [0, hj], then /~j is the rectangle I -b1 ,  bj] x I - h i ,  hj] in 
which we identify the vertical and horizontal sides, respectively). 

(ii) To construct the Riemann surface /~(") by making cuts on each 
torus /~j along the passages ~j.k and ~j+l.k (see Definition 1.1), and 
identifying the appropriate edges of these cuts in such a way that if a point 
within/~i moves toward the cut along ~j,k or ~j+1,k, then it passes through 
the cut to the torus/~j_ 1 or /~ j+l ,  respectively. 

(iii) To assign the vector field v on the Riemann surface /~(n) using 
the relations (1.3), and (1.4), and having the initial angle e in the rectangle 
Ro fixed. 

Thus, using Proposition 3.1, we replace the rectangles Rj by the corre- 
sponding tori/~j, denoting by LU(j) and U(j) ,  respectively, the lines on the 

7r 
Fig. 5 
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torus/~j associated with the upper and the lower sides of the rectangle R i. 
More precisely, in the local coordinates used in Proposition 3.1, Lt(j)= 
{ y = 0 } ,  LU(j)= { y =  hi}. Using the same local coordinates, we define the 
following sets of cuts on the tori corresponding to the passages rg. k (see 
Definition 1.1 ) 

C ( j ) =  { -+ nj, k}, C"(j) = { _+~j+,,~} (3.3a) 

C(O) = C"(n) = ~ (3.3b) 

R e m a r k  3.2. Each set C(j) or C"(j) consists of a finite union of 
intervals. To keep the main statement true for any starting point, we will 
assume below that each such interval includes the left endpoint and does 
not include the right one. Except for this, we leave these sets without 
change. As a matter of fact, such an assignment of endpoints means a 
certain choice of the reflection at the endpoints of the passages. 

Now we construct the Riemann surface k (n/ as follows. Having the 
sheets /~j (0 ~<j~< n), we cut each /~j along the sets Cl(j) and C"(j). Since 
each cut generates two edges ( +  or - ) ,  we have two copies of each set 

_ c ~ _  ' C(j) and CU(j), namely CZ+(j) and +(j), respectively. The sign + or 
of an edge is assigned in a uniform manner according to the direction of 
the y axis (see Fig. 6). Noticing from (3.3) that the sets Cl(j+ 1) and CU(j) 
are generated by the same passages, we may join the sheets by the 
following identification: 

CZ+_(j+ 1) = C+(j) (3.4) 

Equation (3.4) means that we identify the intervals generated by the 
same passages -+~zk. This completes the construction of the Riemann 
surface/~(n). 

I I 

c ~_ (j) 

c~( j )  

[ I 
c~_(j) 

Cl+ (j) 
I 

F i g .  6 

L I 

[ I 

I I 
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Let us assign the vector field v on the our Riemann surface /~(") as 
follows: 

v(Q)=(rjsin~j, rjcos~j), QE_Rj (3.5) 

r j s in~ j=ros inc%,  c%=~, 0 < ~ i < A r c s i n  r ,  O<~j<<.n (3.6) 
r +  

Equalities (3.5) (3.6) define correctly the piecewise constant vector field v 
any where on the Riemann surface except on former edges of the cuts. 
Having v defined on this set, we can define v on the whole surface by 

v(Q)=v(x,y)= lira lim v(x+tl, y+6) (3.7) 
tT~ +0 6 ~  +0 

where (x, y) is the local coordinate of Q. 
That is, the trajectory Q(t) on the surface/~(n) is defined by 

d 
dt Q = v(Q), Q(O) = Qo (3.8) 

If we introduce the mapping V': Qo ~ Q(t), we can write (3.8) in the form 

Q ( t ) =  V'Qo, QoE/~ (~), t e  N (3.9) 

Lemma 3.3. If l'n is Lebesgue measure on the Riemann surface/~(n), 
then V t, t ~ R, is a group of automorphisms on R (n) and ( V ~,/~(n), ]'n) forms 
a dynamical system. In addition: 

(i) V ~, t e R, preserves the measure in. 

(ii) The trajectory q(t) of the ray of light on R (n) can be represented 
by 

q(t)=JQ(t), tE~ (3.10) 

where the operator J acts on each sheet/~j as defined in Proposition 3.1. 

Proof. The first statement follows from (3.8), (3.9), and the definition 
of a dynamical system. (1) The statements (i) and (ii) follow from (3.5)-(3.9) 
and Assumption L. | 

As follows from the constructions (3.5)-(3.9) of the vector field v and 
the group V', a point Q moves under the action of V t rectilinearly within 
any sheet of the Riemann surface until it gets to the intervals of former 
cuts. At these intervals (passages) the point passes to another sheet (rec- 
tangle) with a possible change of the direction (as a result of refraction). 
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Since it is on these intervals where the action of the group changes its form, 
we want to focus our attention on these phases of the evolution. Thus, let 
us construct an operator G, that is associated with V' and maps the lines, 
along which the sheets are connected, to themselves. 

To do so, we consider the lines L~(j), LI(j) defined above, and their 
images s s on the Riemann surface. We should specify what edge 
of the cut belongs to each line. We do this in the following manner: 

s  N~( j )=L"( j ) \C"( j )  (3.11) 

s = Nt(j) u C ~_ (j), N~(j) = L ' ( j ) \C( j )  (3.12) 

The motivation for this choice is to join to the line with argument j the 
edge that goes to a line with the argument j -  1 or j + 1. Denote by Y~ the 
union of all the sets s s  Now we define the G~ as follows: 

G~Q= VtlQ, t 1 = m i n { t > 0 :  V'Q~2#n}, Qe5~, (3.13) 

This construction of G n is analogous to the construction of the relevant 
mapping for billiards. (~) Let us list the properties of the operator G,. 

l o r n m a  3.4. If L( .)  is Lebesgue measure on the set of lines L#~, 
then G, is an automorphism on 5f n preserving the measure L(-). In 
addition, it maps points of a line to the points of closest lines 

G~(N"( j ) )cs  G, (C~_( j ) )cLu( j+ 1) (3.14) 

G,(NZ(j)) c s Gn(C t_ (j)) ~ s  1) (3.15) 

ProoL These statements follow straightforwardly from (3.11), (3.12), 
and the definitions of the group V' and the mapping Gn. | 

It is clear that the action of the Gn could be represented somehow by 
the shift operators S: defined in (1.6). Since the intervals s and s 
have the same length 2bn (b,, is the length of the horizontal side of the rec- 
tangle Rn), we may introduce trivially the isomorphism I(n) from s to 
s (see Fig. 7). By the same reason, in view of (3.3), we may introduce 
in a natural way also the isomorphism J_(n) from C~_(n - 1) to Ct_(n) 
(see Fig. 7). 

Let us set 

~n = hnr~lro sin c~ (3.16) 

where hn is the height of the rectangle Rn. 
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If Sr is the shift operator defined by (1.6) on the k e m m a  3.ft. 
interval s of the length L = 2b,, then 

Gn(s163 G~ [L.(m=I(n)oSr (3.17) 

Gn I N"(n)=  Sr (3.18) 

G. ]c o (~_l)=Sr (3.19) 

Proof. The first equality in (3.17) a simple consequence of 
Lemma 3.4 and (3.3b). The second one as well as the relations (3.18) and 
(3.19) can be obtained by elementary computation from the definitions of 
v by (3.5)-(3.6), G, by (3.13), and (3.16). | 

Now we introduce the following induced map (see Definition 2.10): 

F~ = (G,)~.(,): s ~ s (3.20) 

Our next goal is the following: we want to show that F,  is an interval 
exchange transformation by finding an appropriate representation for F,.  
Then we can use the results of the previous section to prove that F,  is 
minimal with probability 1, and therefore any trajectory Fmx, x es 
m~7/+ ,  is dense in s 

To realize this program, let us find the recurrence formula for F,  as a 
function of n, and then apply induction. Having the region R (n), we con- 
sider the region R (" 1) formed by the same rectangles Ro ..... R , _ I  as well 
as by the same passages Ct(j), C"(j) except for C"(n-1), which is 
eliminated, i.e., supposed to be empty. Applying all previous construction 
to the case of R (n-l), we will have the corresponding Riemann surface 
_~(,-1) and mappings G, 1 and Fn 1. Now let 

' = F ' (3.21) F/, 1 (n--1)CU(n 1) 
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be the induced map acting on C~(n - 1). Denoting by J(n) the natural 
isomorphism from CU(n - 1) to C~_(n - 1) (see Fig. 7), we introduce also 
the following mapping, which acts on s 

F/,_l(X)={~_(n)oJ(n)oF'_~oJ(n) 'oJ_(n)-~ x if x ~ C l_ (n) 

otherwise 

(3.22) 

R e m a r k  3.6. Let us consider the meaning of the introduced 
mappings Fn, F ' _ t ,  and F~"_I. Under the sequential action of the 
automorphism G,, i.e., Gn, G2 , a point Q e ~ ,  jumps from one line in the 
set 5e~ to another one. As follows from Definition 2.10, F,  maps a point on 
s to the point of the first return to s Therefore, considering the 
sequence GmQ, m = 1, 2,..., we can observe two options. 

The first one is if G,Q is in Nt(n), and then, in view of (3.15) and 
(3.18), G2Qes In other words, this is the case when the point 
Q e s returns to the same line without getting out from the nth sheet. 

The second option occurs when G]Q ~ C_(n), and in accordance with 
(3.15), G2Q is in the ( n - 1 ) t h  sheet. This means that the point GnQ is 
within the system R (~ 1) up to the identification of the edges. The operator 
Fs ~ is designed to map the "coming in" point to the "coming out" one. In 
addition, F ' _  ~ as a induced map acts as the minimal positive power of 
Gn ~ that returns the point Q from s  1) back. Therefore in this case 
abusing the notation and using (3.14), we might write F,Q = GnU ~G,Q. 
The operator F,~'_~ is designed to join both cases, taking into account 
appropriate isomorphisms between cuts and their edges. | 

L e m m a  3.7. The following recurrence formula holds: 

Fn=ScnoI(n)-loF"_loI(n)oS~,, n>~2 (3.23) 

Proof. As was explained in Remark 3.6, we will consider two cases. 
In the first case we may state that 

FnQ=G]Q, QeN'(n) (3.24) 

In the second case, using the definition of the induced map, we obtain 

F~Q=G,,oJ(n)oF,',_ioJ(n)-loJ_(n) -1G2Q, Q~C'(n) (3.25) 

Combining (3.24) and (3.25) with (3.17)-(3.19) and (3.22), we get (3.23), 
which completes the proof of the lemma. II 

L e m m a  3.8. Fn is an interval exchange transformation. 
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ProoL For n = 1 this statement is trivial since 

F1 = Sr Sr (3.26) 

Assume that the statement is true for n - 1 ,  i.e., F~_~ is an interval 
exchange transformation. Then, since C"(n- 1) by the definition is the 
union of a finite number of half-open intervals, F,  ~, in accordance with 
Lemma2.12, is a multi-interval exchange transformation on C"(n-1). 
From this and the recurrence formula (3.23) we easily obtain that F,  is an 
interval exchange transformation. | 

I . emma  3.9. Suppose that c~ satisfies (1.4) and is fixed. Then with 
probability 1 for any natural number n, F~ is minimal. 

ProoL For n =  1 the statement trivially follows from (3.26) and 
Assumption M(ii). For n >~ 2 we have the following representation: 

F~ = Sr o F,,_ 1o Se~ (3.27) 

where P , - I  =I (n)  ~oF"_1 oI(n)in accordance with (3.23) and Lemma 3.8 
is an interval exchange transformation that depends only on hi, rj, 
1 ~< j ~< n -  1. It is obvious that the minimality of F,  is equivalent to the 
minimality of the Sr162 . Since, in view of Assump- 
tion M, ~ and Pn = ~ are independent, applying Theorem 3, we obtain with 
probability 1 the minimality of F, .  | 

Lemma 3.10. For any natural number n and fixed c~ satisfying (1.4) 
with probability 1 the set Dn, x={G~x, keT/+} is dense in ~n for any 
X @ ~ . ~  n . 

ProoL If n =  1, the statement trivially follows from Lemma 3.9. 
Assume the statement to be true for n - 1 .  For the beginning we assume 
that the starting point x belongs to s We use the notations introduced 
to derive the recurrence formula (3.23) in considering the surfaces/~(n) and 
/~("-~ and the corresponding mappings. If A is the closure of A, then, 
referring to Lemma 3.9, we can state with probability 1 that 

Dn.xns163 Vx~s (3.28) 

In other words, if (f2, ~ ,  P) is our probability space, then there exist such 
s that P(f21)= 1 and for any c0ef21, (3.28) is true. From (3.28), (3.17), 
and the obvious inclusion G,,(Dn, x)c_ Dn, x we have 

/3.,x c~ s = [/(n), Vx ~ s (3.29) 
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and, in particular, 

D , , : ~ C  t (n)=Cl_(n) ,  Vx e s (3.30) 

The equalities (3.28) and (3.29) mean that the set D .... is dense in the sets 
s and s and therefore it remains to prove that this set is dense in 

n - - I  other lines of 5r Let z be an arbitrary point on Uj=o (s u s 
In view of (3.4), we may treat z as a point in ~,'~_~. Denote by E,,_ ~ the 
subset of ~ , _  ~ that consists of points having the form G~_le, where e is 
a endpoint of intervals from C(j ) ,  C~(j), 1 ~< j~< n - 1 ,  and k is a non- 
negative integer. Since E , _  ~ is a countable set, we can choose y such that 

y e C U ( n - 1 ) ,  y C E ,  ~ (3.31) 

Let ~ be any positive real number. Because of the assumption about R ("- ~), 
we can find such a f22 that P ( f 2 2 )  = 1 and for any co from f22, (3.28) is true, 
and any trajectory G~_ ~x, k E 77+, is dense in LP~_ 1 for any x e 5e~_ 1. In 
particular, for y satisfying (3.31) we can find such a natural number I that 

IGJ,~_ly-z] < e  (3.32) 

k CU(n 1 ) } a n d m = m a x { k : k e K } ,  Now, i f K =  { k ~ Z + :  l ~ k  ~l ,  G~_~ye  
then we have 

Yl G m - l y s C " ( n  1), k = - G ~ _ l y ~ C U ( n - 1 ) ,  l < ~ k < ~ l - m  (3.33) 

and 

l--m G,_  1 Yl - zl < ~ (3.34) 

Notice that from (3.33) and (3.34) it follows that the trajectory of the point 
y~ ~ C~(n - 1) gets close to z being within R ('-~). This means that using 
isomorphisms J(n), J (n), we may write 

G nl ml 21 = Gln rn~ j ~ l ( g l ) ~  J -  l(Fl) Y t  

and therefore 

IG l m o j - l ( n ) o J - l ( n )  y l -  zl <e n (3.35) 

Now, because of the choice o f y  as satisfying (3.31), and the second relation 
in (3.33), we can find a small interval I ( y l ) c  C " ( n -  1), containing Yl, such 
that 

[Gin m o j 5 1 ( n ) o J - l ( n ) y ' - z l  <2e, y' ~ I ( y l )  (3.36) 
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In particular, in view of (3.29), we can take y ' e  I (y l )  such that 

y"=JZl(n)oJ l(n)y' ~Dn, xns 

Since G~n-my"s D . . . .  (3.36) means that the points of D~, x can by arbitrarily 
close to z, or, finally, that Dn, x is dense in 5e,. Let us recall that we proved 
the statement assuming that the starting point x is on s In the general 
case the previous reasoning [-in particular, the validity of the statement for 
R In-l) and(3.15)]  shows that the series of points G~x, keY_+, must 
contain some point G~~ that belongs to s In other words, this means 
that the ray must sooner or later leave the surface R (n- 1). This reduces the 
general case of the starting point to the considered one, and completes the 
proof of the lemma. I 

Proof of Theorem 1.2 and Theorem 1.3. Theorem 1.3 is a 
straightforward corollary of Lemma 3.10. Indeed, as follows from this 
lemma with probability 1, the trajectory of light is dense in 5e n. Using 
Proposition 3.1 and the construction of ~e n and R (n), we can easily see that 
there exists a positive T such that 

U v , y .  = k ~~ 
O<~t<~T 

This obviously leads to the density of the trajectory in the whole surface 
R ("). Then, having proved Theorem 1.3, we notice the following: if the ray 
has a fixed angle with respect to the y axis, say in the rectangle Ro, and 
any starting point, then in accordance with Theorem 1.3 with probability 1 
the ray must sooner or later leave any system of a finite number of connec- 
ted rectangles. This obviously leads to the statement of Theorem 1.2. 

Remarks .  1. Some models for which a wind particle can be 
trapped and for which there is no diffusion are considered in ref. 5. 

2. For  the construction of the Riemann surfaces for rational 
polygons see refs. 6 and 7. 
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